研究報告 令和4年度 i-construction 分野 No. 2

コンクリート構造物の内部欠陥位置推定に関する基礎的研究

A fundamental study on estimating the position space of internal defects in concrete structures

宮崎大学 准教授 李 春鶴

(研究計画ないし研究手法の概略)

打撃反射信号の位相差検出による内部欠陥の空間 位置を推定し、その形状を確定することを目的とす る(図-1).

本研究では、a.内部欠陥をコンクリートの構成物 質と扱い、b.コンクリートという媒質と内部欠陥と の境界面を音源とする打撃反射信号の位相差分析を 通じて、音源の空間位置を推定する発想である.コ ンクリート構造物において、コンクリートという媒

質とひび割れや空洞などの内部欠陥は、コンクリートと鉄筋 のように明確な境界面が存在しているため、不連続な物質構 成と考えられる.すなわち、内部欠陥も鉄筋のようにコンク リート構造物の一つの構成物質と捉えることが可能である. 本研究では音源位置の推定に用いられる位相差検出手法をコ ンクリート構造物に応用・拡張し、また、空間位置の推定が 可能な打音信号の「位相差」に着目して、構成物質における 境界面の空間位置を推定する.打音信号の周波数スペクトル およびその位相差が構成物質の境界面での不連続性の定量化 を、双曲線に基づいた幾何学的な情報数理モデル(図-2)を 用いて解決する.

Fig.1 本研究の概要

(実験調査によって得られた新しい知見)

1. 問題定義

内部欠陥の「信号取得」要素においては、インフラ検査の効率化を目的とした、「相互相関 関数法を用いた二次元欠陥方向推定モデル」を提案する.

2. 二次元欠陥方向推定モデルの設計方法

本研究では入力信号として打撃信号を採用する.また、双曲線の近似モデルは点波源の推 定手法である.構造物のコンクリート壁面で検査することを想定した時、打撃信号は壁面を 打撃することで入力し、振動の取得も同じ壁面で行うこととなる.そのため、双曲線の近似 モデルをそのまま適用すると、欠陥ではなく打撃点の方向を推定することになる.コンクリ ート内部の欠陥はあくまで反射波源であるため、信号の到来方向を推定するだけではなく、 どの信号が反射波源によるものか判断する必要がある.本研究においては欠陥の有無による 対照実験によって欠陥からの反射波を抽出し、相互相関関数法を用いて位相差取得すること を前処理、信号の到来方向推定を後処理とする.また、 前処理と後処理を総合して「相互相関関数法を用いた 二次元欠陥方向推定モデル」定義し、以下呼称する(図 -3).

3. 反射波および位相差の抽出(前処理)

3.1 コンクリート構造物内における反射波の定義 づけ

欠陥信号抽出モデルの開発のためには、反射波を何 とするかが重要になる.欠陥ありなしのみを供試体の 異なる性質にすることで、打撃入力による欠陥からの 出力が反射波として最も近いといえる.よって、反 射波は打撃入力から欠陥の有無のみによって出力 された振動のことであると定義する.

3.2 反射波抽出に適した打撃点およびマイクの
 配置

反射波の抽出方法のアプローチは二つのマイク の位相差に着目した手法である.ここで、反射波の マイク1 マイク2 位相差 欠陥

Fig.3 推定モデルのコンセプト

打撃点 マイク1 マイク2 欠陥

Fig.4(a): Hypothetical relative relationship between microphone, strike point and defect

抽出について説明するため、図 4(a)に示すような配置で打撃点とマイク及び欠陥が配置され ていると仮定する.マイクが二つあるとき、打撃点に近いマイク 1 が振動を最初に受信し、 打撃点から遠いマイク 2 がその次に受信すると予想される.そのときの波形は図 4(b)に示す ように反射などによる影響がなければ、マイク 1 による波形が先行すると考えられる.ここ で、図 4(a)に示すように、マイク 2 の付近に欠陥がある場合を考える.欠陥によって反射し た振動は打撃点の方向に伝搬し、最初にマイク 2 に到達する.その後マイク 1 に到達する. そのため、反射波による位相差は打撃点から欠陥に向けて振動が伝播した時と逆になると考 えられる.つまり、打撃点やマイクの配置を工夫することにより、反射波の位相差を取得で きると考える.

反射波の抽出および位相差の取得に最適な打 撃点とマイクの配置を考える.どの信号が反射波 源によるものか判断するには、打撃の入力による 振動と、打撃の入力によって生じる、欠陥からの 反射波振動といった出力を分ける必要がある.本 研究では、欠陥からの出力による、位相差の取得 が必要となるため、図 5 のような打撃点およびマ イクの配置が適切であると考えた.打撃点とマイ ク 1、2 との距離を同じにすることで、打撃によ る振動入力時間を同じにすることができる.そし て、欠陥とマイク 1、2 間の距離は異なるため、 欠陥からの出力による振動入力時間は異なる.よ

って、欠陥の反射波による位相差のみを抽出することが容易である.よってマイク1、2の 打撃信号の入力時間は共通となる.また、図5を側面から見た場合、図6のように考える. なぜなら、欠陥の真上とそうでない場所の音の違いがあるからだ.現場のトンネル検査員の 内部欠陥における検査方法は、打撃音の違い を聞き取ることであるため、周知の事実であ る. 欠陥の有無による周波数の違いは、反射波 の抽出時に求められる.

3.3 相互相関関数法

相互相関関数法の詳細について既存にある 技術であるため、簡単に説明する.同じサンプ ル数Mからなる2種類の周期信号x(n)、y(n)が ある.この二つの信号の類似性を定義するの が、次式(1)で表せる相互相関関数法である.

Fig.6: Suitable striking points and microphone placement for acquisition of reflected waves (x.z-axis)

$$\phi_{xy}(m) = \frac{1}{M} \sum_{n=1}^{M} x(n) y(n+m)$$
(1)

図7に示すように、式(1)は

- x(n)に対して、y(n)を一定時間 m だけずらしてy(n+m)とする.
- (2) x(n)とy(n+m)の積を各時刻において求める.
- (3) それらを加え合わせ、平均を求める.

の操作によって.2つの信号間の類似性を定 義している.

この式(1)にマイク 1、 2 から得た反射波の 信号をx(n)、y(n)として代入し、計算を行うと、 m(sample)といった位相差を得る.
 打撃振動(共通)

 振幅

 X(n)

 反射波信号:マイク1

 反射波信号:マイク2

 Y(n)

 n1
 n2

Fig.7: Adaptation to reflected waves in cross-correlation function method

x(n)、y(n)に代入すべく、反射波の信号を取得するためには、対照実験が必要である.提案 する手法の評価実験時に、反射波信号の特性も抽出する.以上が前処理における反射波およ

び位相差の抽出方法である. 3.4 信号到来方向推定

次に後処理で用いる定義及び表記について説明する.図8に示すとおり、任意のコンクリートの平面上に原点のMをもつxy平面を定義する.二つのマイクはそれぞれM1及びM2とし、MA、M2はx軸上の0Mを挟んで対称の位置に設置する.また、その際のM1とM2の距離をdMとおく.反射波源Srは同じ平面上の第一象限及び第二象限の任意の箇所に存在する.また、Srによって反射し、M1及びM2で取得した弾性波信号を

Fig.8: Signal arrival direction estimation model

前処理に通した信号をそれぞれ $e_1(n)$ 、 $e_2(n)$ とする. さらに、 M_1 及び M_2 の S_r からの距離に応じ て $e_1(n)$ と $e_2(n)$ が到来する時間に遅れが生じる.本論文において、この時間遅れを到来時間 差とし、 t_{12} と定義する.また、到来時間差に振動の伝播速度vを掛け合わせた値を到来距離 差 d_{12} と定義する.欠陥方向 θ_{defect} は O_M を頂点とする角であり、双曲線の近似モデルと同様 に、+y方向を0°としたときに、第一象限方向へ+90°、第二象限方向へ-90°の範囲で定義され る.

前処理によって、二つのマイクにより欠陥からの反射信号が得られる.これらの反射信号 は離散信号であり、e₁(n)、e₂(n)とする.これらの信号から信号の到来距離差d₁₂を求め、d₁₂ 及びマイク間距離d_Mを双曲線の近似モデルに代入することで、欠陥方向の推定を行う.初め に、e₁(n)、e₂(n)間の遅延を算出する.二つの信号波形の間の遅延は相互相関関数φ₁₂(m)を用 いることで導出することが可能である.相互相関関数とは二つの信号の類似性を定義する関 数である.e₁(n)、e₂(n)のサンプル数がともにMのときφ₁₂(m)は以下の式で求めることができ る.

$$\phi_{12}(m) = \frac{1}{M} \sum_{n=1}^{M} e_1(n) e_2(n+m)$$
⁽²⁾

また、 $\phi_{12}(m)$ が最大となる引数 $m \epsilon \delta_{12}$ とすると、 δ_{12} は以下の式で求められる.

$$\delta_{12} = \arg\max_{m} (\phi_{12}(m)) \tag{3}$$

この $\delta 12$ が $e_1(n)$ 及び $e_2(n)$ の相互相関関数が最大になり、二つの信号が一致したときの遅延サンプル数になる.マイクによるサンプリング周波数を f_s とすると、到来時間差 t_{12} は次式で求められる.

$$t_{12} = \frac{\delta_{12}}{f_s} \tag{4}$$

また、信号の伝播速度をvとおいたとき、 $e_1(n)$ 、 $e_2(n)$ における到来距離差 d_{12} は、以下の式で 求められる.

$$d_{12} = v t_{12} \tag{5}$$

以上の式(2)から式(5)により、二つのマイクで受信した $e_1(n)$ 、 $e_2(n)$ から、到来距離差 d_{12} を求める事ができる.次に双曲線の近似モデルにマイク間距離差 d_M 及び二つの信号の到来距離差 d_{12} を導入し、欠陥の方向を求める.双曲線の近似モデルにおける d_A は後処理における d_M 、 d_e は d_{12} とそれぞれ対応している.そのため、式(4)において $d_A = d_M$ 、 $d_e = d_{12}$ とすると、以下の式で欠陥の方向 θ_{defect} を推定することができる.

$$\theta_{defect} = Arctan2\left(\frac{d_{12}}{2}, \sqrt{\left(\frac{d_M}{2}\right)^2 - \left(\frac{d_{12}}{2}\right)^2}\right)$$
(6)

 θ_{defect} は欠陥からの反射信号 $e_1(n)$ 、 $e_2(n)$ から得られた、反射 信号の到来方向であり、欠陥の方向を指していると考えること ができる.

4. 評価実験

評価実験

4.1 ソレノイド周期打撃機の概要

反射波の抽出および、提案する手法の有効性を検証するため に、打撃装置、記録装置、モデルのアルゴリズム動作環境の実 装を行う.開発した打撃装置の外観を図9に示す.打撃装置の

基本的な仕組みはソレノイドに鉄芯を取り付けた機構により、鉄芯を持ち上げ、落下させる ことで打撃を行う.鉄芯が落下する高さは毎回一定となるため、毎回一定の打撃力を生成す ることができる.

4.2 記録装置・アルゴリズム動作環境

Fig.9: Solenoid Cycle Striking Machine

記録装置としては株式会社ズーム製フィールド レコーダーF8nを使用する.また、同期して録音す ることができるため録音時に複数のマイクで記録 の開始を揃えることができる.打撃信号を実際に取 得するための受信器として Adeline 社製 AD-35 ミ ニピエゾピックアップを用いる.レコーダによって 記録した振動は非圧縮音声ファイルとして保存さ れる.音声ファイルの読み込み、加工及び提案する モデルのアルゴリズムの実装については MathWorks 社製 matlab2022bを用いて行う.

4.3 供試体概要

反射波の抽出および、提案する手法の有効性を検証 するために、コンクリート供試体を用いた実験を行 う.欠陥なしコンクリート供試体の外観を図 12(a)に 示す. 3つの供試体の配合強度は、22.2 N/mm^2で あり、同じ性質の普通コンクリートを使用している. 以下より、"欠陥なし供試体"、"欠陥あり供試体"、"伝 搬速度取得用の供試体"をそれぞれ、供試体1、2、 3とする.欠陥として空隙を選択した理由は、供試体 を打撃したときに、欠陥の有無による音の違いが他の 供試体と比べて明瞭であったからだ.また、コンクリ ートと空気の反射率はほぼ 100%であり、欠陥からの 反射波が受け取りやすいといった点も、考慮してい る.

4.4 提案したモデルの評価実験

まず、打撃点とマイクの配置および打 撃実験の環境設定を行う. 打撃点とマイ クを図 10 のように供試体1、2 に配置 する.

供試体 1 と供試体 2 の、マイク 1 で 取得した信号波形をそれぞれ Waveform 1、Waveform 2 とする. MATLABを用いて、信号波形のパワー スペクトルを取得した.図11から周期 *T*₁ > *T*₂であり、*T*₁の範囲で約4000Hzと

Fig.10: Place microphone 1 and microphone 2 and striking points on EUT 1 and 2

Fig.11: Waveform 1 of specimen with defect and waveform 2 of specimen without defect

Fig.12: Waveforms of specimens with and without defects cut between the first and second peaks

約9000HzのdB値が大きく出ている.よってこの周波数帯を反射波の一部として抽出する. 供試体1のマイク2で取得した信号波形をWaveform3とし、Waveform1、3の波形を 使用する.相互相関関数法を適応する場合、コンクリート供試体は連続体であるため、打撃 入力から時間経過が少ないうちに、実施したほうが良い.時間が経過するほど減衰及び壁面 からの反射波による合成波が入ってくる.よって、ピーク1、2間でのみ、相互相関関数法 を適応する.(図12)Iより、waveform1、3のFFT変換結果(図13)から、4000Hz及び 9000Hz帯の卓越周波数に着目する.

卓越周波数として、waveform1の 3937.5Hz と waveform3の 3750Hz、 waveform1、3の9187.5Hz同士で相互相 関関数法を使用する.到来距離差d₁₂は式 (3)(4)より、4000Hz帯では 14.6cm、 9000Hz帯では 4.5cm と算出した.

二次元欠陥方向推定モデルにおける式 (6)に、求めた到来距離差 d_{12} およびマイク 間距離 d_A を代入する.よって、4000Hz 帯 では θ_{defect} が算出できず、9000Hz 帯では $\theta_{defect} = 45.2$ 度と算出された.

Fig.13: Results of FFT analysis of waveforms of flawed and flawless specimens

他に 30 度、60 度の場合の予測を行い、

それぞれ 32.2 度、64.9 度の結果と算出された. 以上のことから、誤差はあるものの、欠陥 の方向をおおまかに算出できたといえる.よって、有効性があるといえる.

今後の研究では、卓越周波数によって、周波数を決めるのではなく、パワースペクトルを 重視した前処理を行うことが重要であり、モデルの精度を改善する必要がある.

(発表論文)

- 魚住龍太郎, <u>李根浩</u>, <u>李春鶴</u>, 坂口聖弥, 平江海人:トンネルの打音検査の自動化 を目的とした打音検査ロボットの開発(第1報), 精密工学会 2022 年度精密工学会 秋季大会学術講演会, pp.55-56, 2022.9.9(オンライン)
- 坂口聖弥, <u>李根浩</u>, <u>李春鶴</u>, 岡部光汰, 相澤綾一:可変する4脚クローラー機構を用いた地面移動, 2022 年度電子情報通信学会九州支部学生会講演会, B-20(p.1), 2022.9.22 (オンライン)
- 3. <u>Geunho Lee</u>, Kouki Ogata, and <u>Chunhe Li</u>: "Autonomous shape-variable crawler: Onedimensional displacement coordination for constant upper frame posture", IEEE Transactions on Intelligent Transportation Systems, Vol. 23(9), pp.14968-14977, September 2022 (DOI: 10.1109/TITS.2021.3135347)
- 4. 魚住龍太郎, <u>李根浩</u>, <u>李春鶴</u>, 坂口聖弥, 平江海人, 河野哲也:コンクリート構造物
 における欠陥方向推定のための反射波特定手法(第一報), 日本機械学会九州支部第
 54回卒業研究発表講演会, pp.(606)1-2, 2023.3.3 (@宮崎大学工学部)
- 河野哲也, 粂田守, 魚住龍太郎, <u>李根浩</u>, <u>李春鶴</u>: コンクリート構造物の内部欠陥位 置推定に関する基礎的研究, 土木学会西部支部研究発表会講演概要集, VI-006, pp.721-722, 2023.3.4 (熊本大学)